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The failure process of repairable systems are generally modeled by using the point processes like 

renewal process, Nonhomogeneous Poisson process (NHPP), log-linear process etc. using the 

available failure data. Additional information in the form of covariates can also be utilized in 

modeling the failure process using imperfect repair models for carrying out more reliable inferences 

about the process. In this study, we are proposing various imperfect repair models using minimal 

repair baseline intensity like homogeneous Poisson process (HPP), NHPP, Kijima Type – I and 

Kijima Type – II process, Arithmetic Reduction of Age process (ARA) and Arithmetic Reduction of 

Intensity process (ARI), for modeling system failure times. We are also incorporating some covariates 

which have possible influence on the system failures. We are addressing the problem of point and 

confidence intervals for the model parameters.  

Keywords: repairable systems, imperfect repair models, Nonhomogeneous Poisson process, 

covariates   

1. Introduction 

A complex system consists of any structure of more than one component, in which each 

component performs a particular function. Some examples: industrial or domestic machinery, 

biological or ecological structures etc. Such systems often observe failures, following which 

they can be discarded or repaired. For repairable systems, repair action is carried out after a 

failure occurs which intends to put the system back to the state in which it can perform its 

function again. Modeling the effect of these repair actions gives valuable insights in order to 

assess the maintenance and replacement strategies. 

The basic assumptions on repair efficiency are: minimal repair (bad – as – old) and perfect 

repair or maximal repair (good – as – new). But, in reality, the system is in the state between 

these two extremes: maintenance or repair action reduces the failure intensity but does not 

bring the system in the state as good as new. 

Repairable systems are generally modeled by stochastic processes called point processes. A 

renewal process is used for systems which undergo major repairs, and after repair they can be 
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termed as good as new system. Here, the failure intensity starts anew from zero and hence the 

process represents maximal repair.  

A non homogeneous Poisson process is used for systems which undergo minor repairs, and 

the system is brought back to the same state as it was just before failure. Here, the system 

failure intensity remains the same after repair as it was before repair and hence the process 

represents minimal repair. Both these processes represents extreme situations, and do not 

reflect the general behavior of the processes wherein the system is partially repaired and 

renewed. Such processes can be modeled with imperfect repair models. 

Imperfect repair models with renewal process as a baseline have been developed by Kijima 

(1989), termed as Kijima Type I and Kijima Type II processes. Imperfect repair models with 

NHPP as a baseline have been developed by Doyen and Gaudoin (2004), termed as 

Arithmetic Reduction of Age (ARA) and Arithmetic Reduction of Intensity (ARI) processes. 

The failure times of a system may be dependent on many factors. Considering some of these 

factors as covariates, their influence is modeled using appropriate regression model, such as 

proportional intensity process.  

Baseline intensity can be renewal or non homogeneous point process. 

We can assume that, the covariates act multiplicatively on the system’s failure intensity using 

a suitable link function, for example, exponential (Cox (1972), Love and Guo (1991), Kumar 

(1995), Guo et. al. (2001) etc.).  

Typical repairable systems include industrial and domestic machinery, but they can also 

include biological and ecological structures, or can be used for applications arising in social 

science and commerce. The effect of covariates is to modify the baseline intensity function 

up or down depending on the nature and strength of the covariates. 

2. Modeling the System 

Let  𝐻𝑡−  represents the history of the process just prior to time t.  

The conditional intensity of the process   𝜆 𝑡 | 𝐻𝑡−   conditional on the past history of the 

counting process provides a general framework for the modeling of the point process. 

The influence of the covariates can be modeled by means of a proportional intensity process 

based on Cox (1972), with a maximal repair baseline intensity, and is given by 

𝜆 𝑡 | 𝐻𝑡− =  𝜆 𝑡 − 𝑇𝑁𝑡−  𝑓 𝛾′𝑧  

A model with minimal repair for the baseline intensity is given by   

𝜆 𝑡 | 𝐻𝑡− =  𝜆 𝑡   𝑓 𝛾′𝑧  
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The link function  𝑓 ∙   can have an exponential, log or logistic form. We are using 

exponential form as it is highly mathematically tractable. 

Thus the baseline intensity with maximal repair will be of the form 

𝜆 𝑡 | 𝐻𝑡− =  𝜆 𝑡 − 𝑇𝑁𝑡−  𝑒𝑥𝑝 𝛾′𝑧  

and that with minimal repair will be of the form 

𝜆 𝑡 | 𝐻𝑡− =  𝜆 𝑡   𝑒𝑥𝑝 𝛾′𝑧  

Using Power Law Intensity as a baseline intensity, this can be expressed as 

𝜆 𝑡 | 𝐻𝑡− =  𝛼 𝛽 𝑡𝛽−1  𝑒𝑥𝑝 𝛾′𝑧  

For a repairable system, the failure intensity at a point of time depends not only on the mode 

of operation but also on the history of repairs. Kijima (1989) proposed that the state of the 

system just after repair can be described by its virtual age, which is smaller than the real age.  

In this framework, the failure rate depends on the virtual age of the system. Kijima (1989) 

suggested two repair-effect models. Model 1 assumes that repairs serve only to remove the 

damage created in the last failure or breakdown (referred to as KT1 Virtual Age Process) 

whereas Model 2 assumes that repairs could remove all damage accumulated up to that point 

of time (referred to as KT2 Virtual Age Process). That is, such repairs reset the virtual age of 

the system to somewhere between that of a good as new system and a minimally repaired 

system.  

The imperfect repair proportional intensity model proposed by Guo and Love (1992) and 

Gasmi et. al. (2003) is given by 

𝜆 𝑡 | 𝐻𝑡− =  𝜆 𝑥 +  𝜈𝑁𝑡−    𝑒𝑥𝑝 𝛾′𝑧  

 where   𝜈𝑡   represents the virtual age of the system at time t. 

Considering 𝜌 as a constant age reduction factor, Guo and Love (1992) used a Kijima Type 1 

(KT1) process with the following intensity function: 

𝜆 𝑡 | 𝐻𝑡− =  𝜆 𝑥 + 𝜌 𝑇𝑁𝑡−    𝑒𝑥𝑝 𝛾′𝑧  

Using Weibull density for the time to first failure, they arrived at the model: 

𝜆 𝑡 | 𝐻𝑡− =  𝛼 𝛽  𝑥 + 𝜌 𝑇𝑁𝑡− 
𝛽−1

 𝑒𝑥𝑝 𝛾′𝑧  

Gasmi et. al. (2003) used a Kijima Type 2 (KT2) process, considering 𝜌 as a constant age 

reduction factor for obtaining the virtual age, and their model is given by: 

  

𝜆 𝑡 | 𝐻𝑡− =  𝜆  𝑥 +   𝜌
𝑁𝑡−+1−𝑗𝑥𝑗

𝑁𝑡−

𝑗=1

   𝑒𝑥𝑝 𝛾′𝑧  
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With Weibull density for the time to first failure, their model is given by: 

𝜆 𝑡 | 𝐻𝑡− =  𝛼 𝛽  𝑥 +   𝜌
𝑁𝑡−+1−𝑗𝑥𝑗

𝑁𝑡−

𝑗=1

 

𝛽−1

 𝑒𝑥𝑝 𝛾′𝑧  

Doyen and Gaudoin (2004) proposed Arithmetic Reduction of Age (ARA) and Arithmetic 

Reduction of Intensity (ARI) with memory ‘m’ for characterizing imperfect repair processes. 

‘Memory’ is a kind of markovian property; it is the maximal number of previous failure times 

that are involved in the failure intensity. 

The ARA model with memory ‘m’ ( 𝐴𝑅𝐴𝑚  ) is defined by the failure intensity 

𝜆 𝑡 | 𝐻𝑡− =  𝜆  𝑡 −  𝜌   1 −  𝜌 𝑗

𝑀𝑖𝑛  𝑚−1,   𝑁𝑡  − 1 

𝑗 =0

 𝑇𝑁𝑡− 𝑗  

In reduction of age models, it is considered that the repair rejuvenates the system such that its 

intensity at time t is equal to the initial intensity at time 𝐴𝑡  , where 𝐴𝑡  < t. 

Thus, the reduction of age models assumes that repair reduces the virtual age of the system 

by an amount proportional to its age just before the repair.  

The 𝐴𝑅𝐴1 proportional intensity process with a power law process as the baseline intensity is 

given by: 

𝜆 𝑡 | 𝐻𝑡− =  𝛼 𝛽  𝑡 –  𝜌 𝑇𝑁𝑡− 
𝛽−1

 𝑒𝑥𝑝 𝛾′𝑧  

The reduction of intensity model assumes that repair reduces the failure intensity by an 

amount proportional to the current failure intensity. That is, the repair action reduces the 

failure intensity of the system. We are considering only arithmetic reduction, but other types 

of reduction, like geometric reduction can also be considered.  

The ARI model with memory ‘m’ (𝐴𝑅𝐼𝑚 ) is defined by the failure intensity: 

 

𝜆 𝑡 | 𝐻𝑡− =  𝜆 𝑡 −  𝜌   1 −  𝜌 𝑗

𝑀𝑖𝑛  𝑚−1,   𝑁𝑡  − 1 

𝑗 =0

 𝜆 𝑇𝑁𝑡− 𝑗   

 

The 𝐴𝑅𝐼1 proportional intensity process with a power law process as the baseline intensity is 

given by: 

𝜆 𝑡 | 𝐻𝑡− =  𝛼 𝛽  𝑡𝛽−1 − 𝜌 𝑇𝑁𝑡−
𝛽−1

    𝑒𝑥𝑝 𝛾′𝑧  
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3. Estimation of Parameters 

If   0 <  𝑡1 <  𝑡2 < ⋯ <  𝑡𝑛    denote the first 𝑛 ordered system failure times from a time-

truncated process, then the likelihood function of  0 <  𝑡1 <  𝑡2 < ⋯ <  𝑡𝑛                                 

can be given by 

𝐿 𝜃 | 𝑑𝑎𝑡𝑎 =   𝜆  𝑡𝑖  | 𝐻𝑡−  exp  −  𝜆  𝑦 | 𝐻𝑦− 
𝑡

0

 

𝑛

𝑖=1

 𝑑𝑦 

The most widely used method of estimating the parameters of a process from the repairable 

systems data is the method of maximum likelihood. Solving the log likelihood equation using 

iterative methods, the MLEs of the parameters can be obtained. 

Using these estimates, we can obtain the local Fisher’s information matrix. The inverse of the 

Fisher’s information matrix can be used to obtain the approximate confidence intervals for 

the parameters.  

As the MLEs are asymptotically normally distributed, we can use the asymptotic lognormal 

distribution for the MLEs and obtain the 100  1 − 𝛼 % confidence interval for the 

parameter, say τ, as 

 𝜏  . 𝑒𝑥𝑝  ± 𝑍𝛼
2

   𝑣𝑎𝑟  𝜏   / 𝜏   

where  𝜏  is the MLE of parameter τ,  𝑍𝛼
2
 is the upper 

𝛼

2
 percentile point of a standard normal 

distribution and 𝑣𝑎𝑟  𝜏   is the appropriate diagonal entry corresponding to the parameter τ of 

the inverse of Fisher’s Information matrix. 

Also, the Akaike’s Information Criterion (AIC) and Bayesian Information Criterion (BIC) 

can be used to choose the best model for modeling the system failure times. These criterions 

are defined as 

𝐴𝐼𝐶 =  −2 max  ℓ + 2 𝑚  and   𝐵𝐼𝐶 =  −2 max  ℓ +𝑚 𝑙𝑛 𝑛 

where, m is the number of estimated parameters, n is the number of observations and  max  ℓ            

is the maximized log – likelihood. 

4. An Application 

Many researchers are interested in studying stock market efficiency across the globe. Mishra 

(2009) examined the efficiency of Indian stock market using Random Walk and Generalized 

Autoregressive Conditional Heteroscedasticity (GARCH) models. The Power Law Process 

has been used in previous studies to analyze duration dependence in economic and financial 

cycles. Zhou and Rigdon (2008, 2011) analyzed duration dependence in U.S.  Business 

cycles analysis using the Modulated Power Law Process (MPLP).  



 
SRJIS/BIMONTHLY/ DR. RUPAL SHAH (3311-3318)  

MAR-APRIL, 2015, VOL. 3/17                               www.srjis.com Page 3316 
 

Shah and Muralidharan (2013) have analyzed Indian stock prices using non homogeneous 

Poisson process models like Power Law process and Log Linear Process. It is known that the 

variation in SENSEX is influenced by many factors, like, Crude prices, CRR, Food Price 

Inflation, FDI, Dollar Exchange Rate, FOREX etc. In previous studies (Gulati and Kakhani 

(2012), Ghosh, Roy, Bandopadhyay and Choudhuri ), it has been shown that the Price of 

USD Vs. INR, Oil Prices, CRR etc. have significant impact on SENSEX. 

In this study, we are using imperfect repair proportional intensity models with non 

homogeneous baseline intensity process, to model the fluctuations in the BSE SENSEX 

during January 2009 to November 2013, along with the price of USD in terms of INR as a 

covariate, which is one of the influencing factors for BSE SENSEX index. 

The monthly high BSE SENSEX figures are considered as the variable of interest. The event 

times are considered as the number of months it took to observe a fluctuation of 500 points in 

BSE SENSEX, which leads to their modeling using point processes.  

The fluctuation of 500 points in BSE SENSEX is taken as an event time and correspondingly, 

a marginal percentage change in USD vs. INR exchange rate is assumed to take value Z = 1, 

otherwise Z = 0. 

Thus, we have the following data: 

t = cumulative failure times / event times (here, the number of months after which the 

fluctuation      

     of 500 points is observed in BSE SENSEX)  

The cumulative failure times are as follows:  

1, 2, 3, 4, 5, 8, 12, 13, 14, 16, 18, 20, 21, 25, 26, 29, 32, 33, 35, 37, 39, 44, 47, 48, 51, 52, 53, 

55, 56, 58 

The corresponding values of covariate Z are as follows: 

1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1 

We have in all n = 30 event times during the period January 2009 to November 2013. 

Table 1: Parameter Estimation for HPP with Covariate Z 

Parameter Point Estimate 95% Confidence Interval 

𝝀 1.2499 (0.9018, 1.7395) 

𝜸 -19.4847 (-12.3491, 6.2482) 

Other Values: 

𝐦𝐚𝐱𝓵 = -23.30569, 𝑨𝑰𝑪 = 50.61138, 𝑩𝑰𝑪 = 53.41377 
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Table 2: Parameter Estimation for PLP with Covariate Z 

Parameter Point Estimate 95% Confidence Interval 

𝜶 0.5963 (0.3726, 0.8425) 

𝜷 0.9384 (0.5928, 2.2496) 

𝜸 0.1758 (0.09736, 0.3945) 

Other Values: 

𝐦𝐚𝐱𝓵 = -49.5755, 𝑨𝑰𝑪 = 105.1511, 𝑩𝑰𝑪 = 109.3547 

 

Table 3: Parameter Estimation for KT1 Process with Covariate Z 

Parameter Point Estimate 95% Confidence Interval 

𝜶 6.1417 (3.8479, 14.3547) 

𝜷 1.2385 (0.7149, 2.6538) 

𝝆 0.0145 (0.0097, 0.05233) 

𝜸 1.3673 (0.9767, 3.8090) 

Other Values: 

𝐦𝐚𝐱𝓵 = -49.5755, 𝑨𝑰𝑪 = 107.151, 𝑩𝑰𝑪 = 112.7558 

 

Table 4: Parameter Estimation for KT2 Process with Covariate Z 

Parameter Point Estimate 95% Confidence Interval 

𝜶 9.6467 (5.4467, 22.8974) 

𝜷 2.2385 (1.0735, 4.357) 

𝝆 0.0065 (0.0045, 0.0335) 

𝜸 1.9167 (1.1072, 5.3506) 

Other Values: 

𝐦𝐚𝐱𝓵 = -67.5636, 𝑨𝑰𝑪 = 109.4899, 𝑩𝑰𝑪 = 122.3495 

 

Table 5: Parameter Estimation for 𝑨𝑹𝑨𝟏 Process with Covariate Z 

Parameter Point Estimate 95% Confidence Interval 

𝜶 6.8272 (3.5548, 15.3472) 

𝜷 2.2184 (1.4789, 5.3629) 

𝝆 0.1296 (0.0836, 0.4596) 

𝜸 1.6361 (0.9261, 3.3861)  

Other Values: 

𝐦𝐚𝐱𝓵 = -50.5755, 𝑨𝑰𝑪 = 103.5398, 𝑩𝑰𝑪 = 108.2903 

 

Table 6: Parameter Estimation for 𝑨𝑹𝑰𝟏 Process with Covariate Z 

Parameter Point Estimate 95% Confidence Interval 

𝜶 7.1025 (4.9269, 15.7611) 

𝜷 2.0284 (1.4684, 5.0584) 

𝝆 0.1309 (.0969, 0.3349) 

𝜸 1.6938 (1.1338, 4.4938) 

Other Values: 

𝐦𝐚𝐱𝓵 = -51.0573, 𝑨𝑰𝑪 = 110.1146, 𝑩𝑰𝑪 = 115.7194 

 

Concluding Remarks: 

It can be seen that the 𝐾𝑇1 process with a power law process as the baseline intensity and 

covariate USD vs. INR exchange rate provides a better fit to the data set as the AIC and BIC 

values are minimum corresponding to this process. 
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